Home Technology A free-standing lithium phosphorus oxynitride skinny movie electrolyte promotes uniformly dense lithium metallic deposition with no exterior strain

A free-standing lithium phosphorus oxynitride skinny movie electrolyte promotes uniformly dense lithium metallic deposition with no exterior strain

0
A free-standing lithium phosphorus oxynitride skinny movie electrolyte promotes uniformly dense lithium metallic deposition with no exterior strain

[ad_1]

  • Yu, X., Bates, J. B., Jellison, G. E. & Hart, F. X. A steady thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Bates, J. B. et al. Electrical properties of amorphous lithium electrolyte skinny movies. Stable State Ion. 29, 42–44 (1992).


    Google Scholar
     

  • Lacivita, V. et al. Resolving the amorphous construction of lithium phosphorus oxynitride (Lipon). J. Am. Chem. Soc. 140, 11029–11038 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Santhanagopalan, D. et al. Interface restricted lithium transport in solid-state batteries. J. Phys. Chem. Lett. 5, 298–303 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. In situ STEM-EELS commentary of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 3760–3767 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Results of cathode electrolyte interfacial (CEI) layer on long run biking of all-solid-state thin-film batteries. J. Energy Sources 324, 342–348 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, D. et al. Unveiling the steady nature of the stable electrolyte interphase between lithium metallic and lipon by way of cryogenic electron microscopy. Joule 4, 2484–2500 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hood, Z. D. et al. Elucidating interfacial stability between lithium metallic anode and Li phosphorus oxynitride by way of in situ electron microscopy. Nano Lett. 21, 151–157 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. A., Tippens, J., Cortes, F. J. Q. & McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Developments Chem. https://doi.org/10.1016/j.trechm.2019.06.013 (2019).

  • Herbert, E. G., Tenhaeff, W. E., Dudney, N. J. & Pharr, G. M. Mechanical characterization of LiPON movies utilizing nanoindentation. Skinny Stable Movies 520, 413–418 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Xu, F. et al. Full elastic characterization of lithium phosphorous oxynitride movies utilizing picosecond ultrasonics. Skinny Stable Movies 548, 366–370 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, S., Fu, Z. & Qin, Q. A solid-state electrolyte lithium phosphorus oxynitride movie ready by pulsed laser deposition. Skinny Stable Movies 415, 108–113 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Kozen, A. C., Pearse, A. J., Lin, C. F., Noked, M. & Rubloff, G. W. Atomic layer deposition of the stable electrolyte LiPON. Chem. Mater. 27, 5324–5331 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W. Y., Fu, Z. W., Li, C. L. & Qin, Q. Z. Lithium phosphorus oxynitride skinny movie fabricated by a nitrogen plasma-assisted deposition of E-beam response evaporation. Electrochem. Stable-State Lett. 7, 36–41 (2004).

    Article 

    Google Scholar
     

  • Nowak, S., Berkemeier, F. & Schmitz, G. Extremely-thin LiPON movies—basic properties and utility in stable state skinny movie mannequin batteries. J. Energy Sources 275, 144–150 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. T., Mun, T., Park, C., Jin, S. W. & Park, H. Y. Traits of lithium phosphorous oxynitride skinny movies deposited by metallic–natural chemical vapor deposition method. J. Energy Sources 244, 641–645 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Muñoz, F. et al. Elevated electrical conductivity of LiPON glasses produced by ammonolysis. Stable State Ion. 179, 574–579 (2008).

    Article 

    Google Scholar
     

  • Westover, A. S. et al. Plasma synthesis of spherical crystalline and amorphous electrolyte nanopowders for solid-state batteries. ACS Appl. Mater. Interfaces 12, 11570–11578 (2020).

    Article 
    CAS 

    Google Scholar
     

  • López-Aranguren, P. et al. Crystalline LiPON as a bulk-type stable electrolyte. ACS Power Lett. https://doi.org/10.1021/acsenergylett.0c02336 (2021).

  • Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte skinny movies and rechargeable thin-film batteries. J. Energy Sources 43, 103–110 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Schwöbel, A., Hausbrand, R. & Jaegermann, W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Stable State Ion. 273, 51–54 (2015).

    Article 

    Google Scholar
     

  • Le Van-Jodin, L., Ducroquet, F., Sabary, F. & Chevalier, I. Dielectric properties, conductivity and Li+ ion movement in LiPON skinny movies. Stable State Ion. 253, 151–156 (2013).

    Article 

    Google Scholar
     

  • Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Stable electrolyte: the important thing for high-voltage lithium batteries. Adv. Power Mater. 5, 1401408 (2015).

  • Marple, M. A. T. et al. Native construction of glassy lithium phosphorus oxynitride skinny movies: a mixed experimental and ab initio method. Angew. Chem. Int. Ed. 59, 22185–22193 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Köcher, S. S. et al. Chemical shift reference scale for Li stable state NMR derived by first-principles DFT calculations. J. Magn. Reson. 297, 33–41 (2018).

    Article 

    Google Scholar
     

  • Vieira, E. et al. Versatile solid-state Ge–LiCoO2 battery: from supplies to machine utility. Adv. Mater. Lett. 8, 820–829 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sepúlveda, A., Criscuolo, F., Put, B. & Vereecken, P. M. Impact of excessive temperature LiPON electrolyte in all stable state batteries. Stable State Ion. 337, 24–32 (2019).

    Article 

    Google Scholar
     

  • Kalnaus, S., Westover, A. S., Kornbluth, M., Herbert, E. & Dudney, N. J. Resistance to fracture within the glassy stable electrolyte Lipon. J. Mater. Res. https://doi.org/10.1557/s43578-020-00098-x (2021).

  • Ma, D., Chung, W. O., Liu, J. & He, J. Dedication of Younger’s modulus by nanoindentation. Sci. China E 47, 398–408 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Abadias, G. & Daniel, R. in Handbook of Trendy Coating Applied sciences (eds Aliofkhazraei, M. et al.) 359–436 (Elsevier, 2021).

  • Swadener, J. G., Taljat, B. & Pharr, G. M. Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 16, 2091–2102 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. Z. et al. Cryogenic centered ion beam characterization of lithium metallic anodes. ACS Power Lett. 4, 489–493 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. J., Carmona, E., Gupta, A., Albertus, P. & Sakamoto, J. Enabling ‘lithium-free’ manufacturing of pure lithium metallic solid-state batteries by means of in situ plating. Nat. Commun. 11, 5201 (2020).

  • Lee, Y. G. et al. Excessive-energy long-cycling all-solid-state lithium metallic batteries enabled by silver–carbon composite anodes. Nat. Power 5, 299–308 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Motoyama, M., Ejiri, M. & Iriyama, Y. Modeling the nucleation and progress of Li at metallic present collector/LiPON interfaces. J. Electrochem. Soc. 162, A7067–A7071 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yan, Ok. et al. Selective deposition and steady encapsulation of lithium by means of heterogeneous seeded progress. Nat. Power 1, 16010 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Ok., Kazyak, E., Wang, M. J., Dasgupta, N. P. & Sakamoto, J. Analyzing void formation and rewetting of skinny in situ-formed Li anodes on LLZO. Joule 6, 2547–2565 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kasemchainan, J. et al. Essential stripping present results in dendrite formation on plating in lithium anode stable electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here