Home Technology Efficient therapy of metastatic sentinel lymph nodes by dual-targeting melittin nanoparticles | Journal of Nanobiotechnology

Efficient therapy of metastatic sentinel lymph nodes by dual-targeting melittin nanoparticles | Journal of Nanobiotechnology

0
Efficient therapy of metastatic sentinel lymph nodes by dual-targeting melittin nanoparticles | Journal of Nanobiotechnology

[ad_1]

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. World most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA: A Most cancers J Clin. 2021;71(3):209–49.


    Google Scholar
     

  • Zhou J, Yang W, Liu Q. Most cancers challenges worldwide and in China: getting ready for the inevitable. Sci China Life Sci. 2022;65(2):442–4.

    Article 
    PubMed 

    Google Scholar
     

  • Chaffer CL, Weinberg RA. A perspective on most cancers cell metastasis. Science. 2011;331(6024):1559–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganesh Okay, Massagué J. Concentrating on metastatic most cancers. Nat Med. 2021;27(1):34–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leong SP, Pissas A, Scarato M, Gallon F, Pissas MH, Amore M, Wu M, Faries MB, Lund AW. The lymphatic system and sentinel lymph nodes: conduit for most cancers metastasis. Clin Exp Metastasis. 2022;39(1):139–57.

    Article 
    PubMed 

    Google Scholar
     

  • Brown M, Assen FP, Leithner A, Abe J, Schachner H, Asfour G, Bago-Horvath Z, Stein JV, Uhrin P, Sixt M, et al. Lymph node blood vessels present exit routes for metastatic tumor cell dissemination in mice. Science. 2018;359(6382):1408–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demicheli R, Retsky MW, Hrushesky WJM, Baum M, Gukas ID. The consequences of surgical procedure on tumor development: a century of investigations. Ann Oncol. 2008;19(11):1821–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ceelen W, Pattyn P, Mareel M. Surgical procedure, wound therapeutic, and metastasis: current insights and medical implications. Crit Rev Oncol Hematol. 2014;89(1):16–26.

    Article 
    PubMed 

    Google Scholar
     

  • Bello MA, Bergmann A, Dias R, Thuler LCS, Tonellotto F, Pinto RR, Fabro E. Incidence problems following sentinel lymph node biopsy or axillary lymph node dissection after breast most cancers surgical procedure. J Clin Oncol. 2012;30(27):97–97.

    Article 

    Google Scholar
     

  • Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to focus on the lymphatic system for antitumor therapy. Cell Mol Life Sci. 2021;78(12):5139–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan X, Li Y, Feng Z, Chen G, Zhou J, He M, Wu L, Li S, Qian J, Lin H. Nanoprobes-assisted multichannel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes. Adv Sci. 2021;8(9):2003972.

    Article 
    CAS 

    Google Scholar
     

  • Liu W, Ye X, He L, Cheng J, Luo W, Zheng M, Hu Y, Zhang W, Cao Y, Ran H, et al. A novel focused multifunctional nanoplatform for visible chemo-hyperthermia synergy remedy on metastatic lymph nodes by way of lymphatic supply. J Nanobiotechnol. 2021;19(1):432.

    Article 
    CAS 

    Google Scholar
     

  • Pang Z, Yan W, Yang J, Li Q, Guo Y, Zhou D, Jiang X. Multifunctional gold nanoclusters for efficient concentrating on, near-infrared fluorescence imaging, prognosis, and therapy of most cancers lymphatic metastasis. ACS Nano. 2022;16(10):16019–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian R, Ma H, Zhu S, Lau J, Ma R, Liu Y, Lin L, Chandra S, Wang S, Zhu X, et al. Multiplexed NIR-II probes for lymph node-invaded most cancers detection and imaging-guided surgical procedure. Adv Mater. 2020;32(11):1907365.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Li H-J, Luo Y-L, Xu C-F, Du X-J, Du J-Z, Wang J. Enhanced major tumor penetration facilitates nanoparticle draining into lymph nodes after systemic injection for tumor metastasis inhibition. ACS Nano. 2019;13(8):8648–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabral H, Makino J, Matsumoto Y, Mi P, Wu H, Nomoto T, Toh Okay, Yamada N, Higuchi Y, Konishi S, et al. Systemic concentrating on of lymph node metastasis by means of the blood vascular system through the use of size-controlled nanocarriers. ACS Nano. 2015;9(5):4957–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their medical purposes. Nano At present. 2021;36:101004.

    Article 
    CAS 

    Google Scholar
     

  • Trac N, Chung EJ. Overcoming physiological obstacles by nanoparticles for intravenous drug supply to the lymph nodes. Exp Biol Med. 2021;246(22):2358–71.

    Article 
    CAS 

    Google Scholar
     

  • Hegde M, Naliyadhara N, Unnikrishnan J, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Nanoparticles within the prognosis and therapy of most cancers metastases: present and future views. Most cancers Lett. 2023;556:216066.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, et al. Lymphatic metastasis within the absence of practical intratumor lymphatics. Science. 2002;296(5574):1883–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong SY, Hynes RO. Lymphatic or hematogenous dissemination: how does a metastatic tumor cell resolve? Cell Cycle. 2006;5(8):812–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z. Tumor metastasis inhibition by imaging-guided photothermal remedy with single-walled carbon nanotubes. Adv Mater. 2014;26(32):5646–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu H, Wang J, Wang H, Tan T, Li J, Wang Z, Solar Okay, Li Y, Zhang Z. Cell-penetrating peptide-based nanovehicles potentiate lymph metastasis concentrating on and deep penetration for anti-metastasis remedy. Theranostics. 2018;8(13):3597–610.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Fan Z, Liu J, Wang J, Xu M, Li X, Xu Y, Lu Y, Han C, Zhang Z. Melittin-carrying nanoparticle suppress T cell-driven immunity in a murine allergic dermatitis mannequin. Adv Sci. 2023;10, 2204184.

    Article 

    Google Scholar
     

  • Liu H, Hu Y, Solar Y, Wan C, Zhang Z, Dai X, Lin Z, He Q, Yang Z, Huang P, et al. Co-delivery of bee venom melittin and a photosensitizer with an organic-inorganic hybrid nanocarrier for photodynamic remedy and immunotherapy. ACS Nano. 2019;13(11):12638–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Chen X, Gueydan C, Han J. Plasma membrane adjustments throughout programmed cell deaths. Cell Res. 2018;28(1):9–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Chen J, Ding L, Jin H, Lovell JF, Corbin IR, Cao W, Lo P-C, Yang M, Tsao M-S, et al. HDL-mimicking peptide-lipid nanoparticles with improved tumor concentrating on. Small. 2010;6(3):430–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang C, Jin H, Qian Y, Qi S, Luo H, Luo Q, Zhang Z. Hybrid melittin cytolytic peptide-driven ultrasmall lipid nanoparticles block melanoma development in vivo. ACS Nano. 2013;7(7):5791–800.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu X, Chen L, Liu J, Dai B, Xu G, Shen G, Luo Q, Zhang Z. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat Commun. 2019;10(1):574.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu X, Dai Y, Zhao Y, Qi S, Liu L, Lu L, Luo Q, Zhang Z. Melittin-lipid nanoparticles goal to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020;11(1):1110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai Y, Yu X, Wei J, Zeng F, Li Y, Yang X, Luo Q, Zhang Z. Metastatic standing of sentinel lymph nodes in breast most cancers decided with photoacoustic microscopy by way of dual-targeting nanoparticles. Gentle Sci Appl. 2020;9(1):164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao H-Q. Bodily and chemical profiles of nanoparticles for lymphatic concentrating on. Adv Drug Deliv Rev. 2019;151–152:72–93.

    Article 
    PubMed 

    Google Scholar
     

  • Louderbough JMV, Schroeder JA. Understanding the twin nature of CD44 in breast most cancers development. Mol Most cancers Res. 2011;9(12):1573–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan T, Hu H, Wang H, Li J, Wang Z, Wang J, Wang S, Zhang Z, Li Y. Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to enhance most cancers cell accessibility of second nanoparticles. Nat Commun. 2019;10(1):3322.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed M, Purushotham AD, Douek M. Novel methods for sentinel lymph node biopsy in breast most cancers: a scientific evaluation. Lancet Oncol. 2014;15(8):e351–62.

    Article 
    PubMed 

    Google Scholar
     

  • Jeong YJ, Choi Y, Shin JM, Cho HJ, Kang JH, Park KK, Choe JY, Bae YS, Han SM, Kim CH, Chang HW, Chang YC. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast most cancers cells. Meals Chem Toxicol. 2014;68:218–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duffy C, Sorolla A, Wang E, Golden E, Woodward E, Davern Okay, Ho D, Johnstone E, Pfleger Okay, Redfern A, et al. Honeybee venom and melittin suppress development issue receptor activation in HER2-enriched and triple-negative breast most cancers. npj Summary Oncol. 2020;4(1):24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour—concentrating on the lymphatic system to advertise drug publicity and exercise. Nat Rev Drug Discov. 2015;14(11):781–803.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell PJ, Fau Hewish D, Carter T, Fau Carter T, Sterling-Levis Okay, Fau Sterling-Levis Okay, Ow Okay, Fau Ow Okay, Hattarki M, Fau Hattarki M, Doughty L, Fau Doughty L, Guthrie R, Fau Guthrie R, Shapira D, Fau Shapira D, Molloy PL, Fau Molloy Pl, Werkmeister JA, et al. Cytotoxic properties of immunoconjugates containing melittin-like peptide 101 in opposition to prostate most cancers: in vitro and in vivo research. Most cancers Immunol Immunother. 2004;53(5):411–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan H, Fau Myerson Jw, Ivashyna O, Fau Ivashyna O, Soman NR, Fau Soman Nr, Marsh JN, Fau Marsh Jn, Hood JL, Fau Hood Jl, Lanza GM, Fau Lanza Gm, Schlesinger PH, Fau Schlesinger Ph, Wickline SA, Wickline SA. Lipid membrane modifying with peptide cargo linkers in cells and artificial nanostructures. FASEB J. 2010;24(8):2928–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu W, Zhou Y, Solar D, Li Z. An uPA cleavable conjugate of a recombinant αvβ3 concentrating on toxin and its bioactivity. World J Microbiol Biotechnol. 2011;27:563–9.

    Article 
    CAS 

    Google Scholar
     

  • Ji C, Zhao M, Wang C, Liu R, Zhu S, Dong X, Su C, Gu Z. Biocompatible tantalum nanoparticles as radiosensitizers for enhancing remedy efficacy in major tumor and metastatic sentinel lymph nodes. ACS Nano. 2022;16(6):9428–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Wang L, Xu Y-N, Chen J-L, Luo KQ, Yuan M-H, Li J, Yuan G, Gu Z-Y, Jia X-H, et al. Chemo-phototherapy with carfilzomib-encapsulated TiN nanoshells suppressing tumor development and lymphatic metastasis. Small. 2022;18(29):2200522.

    Article 
    CAS 

    Google Scholar
     

  • Xu M, Zhao D, Chen Y, Chen C, Zhang L, Solar L, Chen J, Tang Q, Solar S, Ma C, et al. Cost reversal polypyrrole nanocomplex-mediated gene supply and photothermal remedy for successfully treating papillary thyroid most cancers and inhibiting lymphatic metastasis. ACS Appl Mater Interfaces. 2022;14(12):14072–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Dai G, Jiang G, Zhang D, Wang L, Zhang W, Chen H, Cheng T, Zhou Y, Wei X, et al. A TMVP1-modified near-infrared nanoprobe: molecular imaging for tumor metastasis in sentinel lymph node and focused enhanced photothermal remedy. J Nanobiotechnol. 2023;21(1):130.

    Article 
    CAS 

    Google Scholar
     

  • Zhang G, Cheng W, Yang N, Yang B, Yu S, Zheng J, Li M, Fu Y, Li X, Track Y, et al. Peptide-decorated synthetic erythrocyte microvesicles endowed with lymph node concentrating on operate for drug supply. Adv Ther. 2023;6(6):2200236.

    Article 
    CAS 

    Google Scholar
     

  • Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ. Elevated expression of phosphatidylserine within the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes1. Can Res. 1991;51(11):3062–6.

    CAS 

    Google Scholar
     

  • Lin Q, Deng D, Track X, Dai B, Yang X, Luo Q, Zhang Z. Self-assembled “off/on” nanopomegranate for in vivo photoacoustic and fluorescence imaging: strategic association of kupffer cells in mouse hepatic lobules. ACS Nano. 2019;13(2):1526–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Corbin IR, Chen J, Cao W, Li H, Lund-Katz S, Zheng G. Enhanced cancer-targeted supply utilizing engineered high-density lipoprotein-based nanocarriers. J Biomed Nanotechnol. 2007;3:367.

    Article 
    CAS 

    Google Scholar
     

  • Luo H, Yang J, Jin H, Huang C, Fu J, Yang F, Gong H, Zeng S, Luo Q, Zhang Z. Tetrameric far-red fluorescent protein as a scaffold to assemble an octavalent peptide nanoprobe for enhanced tumor concentrating on and intracellular uptake in vivo. FASEB J. 2011;25(6):1865–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here