Thursday, February 15, 2024
HomeTechnologyElectroactive membrane fusion-liposome for elevated electron switch to boost radiodynamic remedy

Electroactive membrane fusion-liposome for elevated electron switch to boost radiodynamic remedy


  • Shi, L. et al. Extracellular electron switch mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. CSH Perspect. Biol. 2, a000414 (2010).


    Google Scholar
     

  • Castelle, C. et al. A brand new iron-oxidizing/O2-reducing supercomplex spanning each interior and outer membranes, remoted from the intense acidophile Acidithiobacillus ferrooxidans. J. Biol. Chem. 283, 25803–25811 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Beliaev, A. S., Saffarini, D. A., McLaughlin, J. L. & Hunnicutt, D. MtrC, an outer membrane decahaem c cytochrome required for metallic discount in Shewanella putrefaciens MR-1. Mol. Microbiol. 39, 722–730 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Myers, C. R. & Myers, J. M. MtrB is required for correct incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Appl. Environ. Microb. 68, 5585–5594 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Bretschger, O. et al. Present manufacturing and metallic oxide discount by Shewanella oneidensis MR-1 wild kind and mutants. Appl. Environ. Microbiol. 73, 7003–7012 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Edwards, M. J., White, G. F., Butt, J. N., Richardson, D. J. & Clarke, T. A. The crystal construction of a organic insulated transmembrane molecular wire. Cell 181, 665–673 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Choi, S. Electrogenic micro organism promise new alternatives for powering, sensing, and synthesizing. Small 18, 2107902 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ainsworth, E. V. et al. Photoreduction of Shewanella oneidensis extracellular cytochromes by natural chromophores and dye-sensitized TiO2. ChemBioChem 17, 2324–2333 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. & Choi, S. Enhanced biophotoelectricity technology in cyanobacterial biophotovoltaics with intracellularly biosynthesized gold nanoparticles. J. Energy Sources 506, 230251 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Deng, X., Luo, D. & Okamoto, A. Outlined and unknown roles of conductive nanoparticles for the enhancement of microbial present technology: a evaluation. Bioresour. Technol. 350, 126844 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Q. W. et al. Self-mineralized photothermal micro organism hybridizing with mitochondria-targeted metallic–natural frameworks for augmenting photothermal tumor remedy. Adv. Funct. Mater. 30, 1909806 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. W. et al. A self-driven bioreactor primarily based on bacterium–metallic–natural framework biohybrids for reinforcing chemotherapy by way of lactate catabolism. ACS Nano 15, 17870–17884 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. N., Niu, M. T., Fan, J. X., Chen, Q. W. & Zhang, X. Z. Photoelectric micro organism improve the in situ manufacturing of tetrodotoxin for antitumor remedy. Nano Lett. 21, 4270–4279 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. P., Lengthy, X., Kataoka-Hamai, C. & Okamoto, A. Membrane built-in liposome synthesized by a liposome fusion-induced membrane trade. Preprint at https://doi.org/10.26434/chemrxiv-2022-9tt9m (2022).

  • Choi, W., Choi, J. Y. & Track, H. Regulation of electron–gap recombination kinetics on uniform metallic–semiconductor nanostructures for photocatalytic hydrogen evolution. APL Mater. 7, 100702 (2019).

    Article 

    Google Scholar
     

  • Chen, L. et al. Composition tunability of semiconductor radiosensitizers for low-dose X-ray induced photodynamic remedy. J. Nanobiotechnol. 20, 293 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moon, J. T., Lee, S. Ok. & Joo, J. B. Controllable one-pot synthesis of uniform colloidal TiO2 particles in a combined solvent answer for photocatalysis. Beilstein J. Nanotechnol. 9, 1715–1727 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, L. J. et al. Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for top efficiency inverted polymer photo voltaic cells. RSC Adv. 7, 20084–20092 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mihaly, J. et al. Characterization of extracellular vesicles by IR spectroscopy: quick and easy classification primarily based on amide and C–H stretching vibrations. Biochim. Biophys. Acta Biomembr. 1859, 459–466 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bonechi, C. et al. Physicochemical characterization of hyaluronic acid and chitosan liposome. Coat. Appl. Sci. 11, 12071 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Reuillard, B. et al. Excessive efficiency discount of H2O2 with an electron transport decaheme cytochrome on a porous ITO electrode. J. Am. Chem. Soc. 139, 3324–3327 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Okamoto, A., Nakamura, R. & Hashimoto, Ok. In-vivo identification of direct electron switch from Shewanella oneidensis MR-1 to electrodes by way of outer-membrane OmcA–MtrCAB protein complexes. Electrochim. Acta 56, 5526–5531 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Okamoto, A., Tokunou, Y., Kalathil, S. & Hashimoto, Ok. Proton transport within the outer-membrane flavocytochrome advanced limits the speed of extracellular electron transport. Angew. Chem. Int. Ed. 56, 9082–9086 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Van Acker, H. et al. The position of reactive oxygen species in antibiotic-induced cell loss of life in Burkholderia cepacia advanced micro organism. PLoS ONE 11, e0159837 (2016).

    Article 

    Google Scholar
     

  • Shoji, T. et al. DMPO–OH radical formation from 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in scorching water. Anal. Sci. 23, 219–221 (2007).

    Article 

    Google Scholar
     

  • Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97–112 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Oberley, L. W. & Buettner, G. R. Position of superoxide-dismutase in most cancers—evaluation. Most cancers Res. 39, 1141–1149 (1979).

    CAS 

    Google Scholar
     

  • Marklund, S. L., Westman, N. G., Lundgren, E. & Roos, G. Copper-containing and zinc-containing superoxide-dismutase, manganese-containing superoxide-dismutase, catalase, and glutathione-peroxidase in regular and neoplastic human cell-lines and regular human-tissues. Most cancers Res. 42, 1955–1961 (1982).

    CAS 

    Google Scholar
     

  • Huang, P., Feng, L., Oldham, E. A., Keating, M. J. & Plunkett, W. Superoxide dismutase as a goal for the selective killing of most cancers cells. Nature 407, 390–395 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Clark, J. M. The 3Rs in analysis: a recent method to substitute, discount and refinement. Br. J. Nutr. 120, S1–S7 (2018).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments