Home Technology Ldl cholesterol modulates the physiological response to nanoparticles by altering the composition of protein corona

Ldl cholesterol modulates the physiological response to nanoparticles by altering the composition of protein corona

0
Ldl cholesterol modulates the physiological response to nanoparticles by altering the composition of protein corona

[ad_1]

  • Quesada-Gonzalez, D. & Merkoci, A. Nanomaterial-based gadgets for point-of-care diagnostic functions. Chem. Soc. Rev. 47, 4697–4709 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Irvine, D. J. & Dane, E. L. Enhancing most cancers immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary results of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guerrini, G., Magrì, D., Gioria, S., Medaglini, D. & Calzolai, L. Characterization of nanoparticles-based vaccines for COVID-19. Nat. Nanotechnol. 17, 570–576 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gadekar, V. et al. Nanomedicines accessible available in the market for scientific interventions. J. Management. Launch 330, 372–397 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Thi, T. T. H. et al. Lipid-based nanoparticles within the clinic and scientific trials: from most cancers nanomedicine to COVID-19 vaccines. Vaccines 9, 359 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, Ok. A. Biomolecular coronas present the organic id of nanosized supplies. Nat. Nanotechnol. 7, 779–786 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ren, J. et al. Chemical and biophysical signatures of the protein corona in nanomedicine. J. Am. Chem. Soc. 144, 9184–9205 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Latreille, P.-L. et al. Scratching the floor of the protein corona: difficult measurements and controversies. ACS Nano 16, 1689–1707 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Nanoparticle elasticity impacts systemic circulation lifetime by modulating adsorption of apolipoprotein A-I in corona formation. Nat. Commun. 13, 4137 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kamaly, N. Nanoparticle protein corona evolution: from organic impression to biomarker discovery. Nanoscale 14, 1606–1620 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ju, Y. et al. Individual-specific biomolecular coronas modulate nanoparticle interactions with immune cells in human blood. ACS Nano 14, 15723–15737 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hajipour, M. J., Laurent, S., Aghaie, A., Rezaee, F. & Mahmoudi, M. Customized protein coronas: a ‘key’ issue on the nano-bio interface. Biomater. Sci. 2, 1210–1221 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Shannahan, J. H. et al. From the duvet: disease-induced disparities in formation of the nanoparticle-biocorona and the toxicological penalties. Toxicol. Sci. 152, 406–416 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ren, J. et al. Precision nanomedicine improvement primarily based on particular opsonization of human most cancers patient-personalized protein coronas. Nano Lett. 19, 4692–4701 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lazarovits, J. et al. Synthesis of patient-specific nanomaterials. Nano Lett. 19, 116–123 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Di Santo, R. et al. Customized graphene oxide-protein corona within the human plasma of pancreatic most cancers sufferers. Entrance. Bioeng. Biotechnol. 8, 491 (2020).

    Article 

    Google Scholar
     

  • Chetwynd, A. J. & Lynch, I. The rise of the nanomaterial metabolite corona, and emergence of the entire corona. Environ. Sci. Nano 7, 1041–1060 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Raesch, S. S. et al. Proteomic and lipidomic evaluation of nanoparticle corona upon contact with lung surfactant reveals variations in protein, however not lipid composition. ACS Nano 9, 11872–11885 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Braccia, C. et al. The lipid composition of few layers graphene and graphene oxide biomolecular corona. Carbon 185, 591–598 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Ok., Salvati, A. & Sabirsh, A. Physiology, pathology and the biomolecular corona: the confounding elements in nanomedicine design. Nanoscale 14, 2136–2154 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kobos, L. M. et al. An integrative proteomic/lipidomic evaluation of the gold nanoparticle biocorona in wholesome and overweight circumstances. Appl. Vitr. Toxicol. 5, 150–166 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lima, T., Bernfur, Ok., Vilanova, M. & Cedervall, T. Understanding the lipid and protein corona formation on totally different sized polymeric nanoparticles. Sci. Rep. 10, 1129 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tavakol, M. et al. Illness-related metabolites have an effect on protein-nanoparticle interactions. Nanoscale 10, 7108–7115 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Luo, J., Yang, H. & Tune, B. L. Mechanisms and regulation of ldl cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Civeira, F., Arca, M., Cenarro, A. & Hegele, R. A. A mechanism-based operational definition and classification of hypercholesterolemia. J. Clin. Lipidol. 16, 813–821 (2022).

    Article 

    Google Scholar
     

  • Kim, S. H. et al. Understanding the biomolecular coronas of high-density lipoproteins on pegylated Au nanoparticles: implication for lipid corona formation within the blood. ACS Appl. Nano Mater. 5, 2018–2028 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H., Kumar, S., Kang, D. W., Jo, H. & Park, J. H. Affinity-driven design of cargo-switching nanoparticles to leverage a cholesterol-rich microenvironment for atherosclerosis remedy. ACS Nano 14, 6519–6531 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Q., Yu, L., Wang, Y., Li, P. & Tune, J. Biomarker-responsive nanosystems for continual illness theranostics. Adv. Funct. Mater. 33, 2206300 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Ok. R., Kim, J., Again, J. H., Lee, J. E. & Ahn, D. R. Ldl cholesterol-mediated seeding of protein corona on dna nanostructures for focused supply of oligonucleotide therapeutics to deal with liver fibrosis. ACS Nano 16, 7331–7343 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J. & El-Sayed, M. A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived most cancers cells and suppress tumour progress. Nat. Nanotechnol. 11, 977–985 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A decade of the protein corona. ACS Nano 11, 11773–11776 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, Q. et al. The consequences of protein corona on in vivo destiny of nanocarriers. Adv. Drug Deliv. Rev. 186, 114356 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Blanco, E., Shen, H. & Ferrari, M. Rules of nanoparticle design for overcoming organic boundaries to drug supply. Nat. Biotechnol. 33, 941–951 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Francia, V. et al. Corona composition can have an effect on the mechanisms cells use to internalize nanoparticles. ACS Nano 13, 11107–11121 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lara, S. et al. Identification of receptor binding to the biomolecular corona of nanoparticles. ACS Nano 11, 1884–1893 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ngo, W. et al. Figuring out cell receptors for the nanoparticle protein corona utilizing genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Benetti, F., Bregoli, L., Olivato, I. & Sabbioni, E. Results of steel (loid)-based nanomaterials on important factor homeostasis: the central function of nanometallomics for nanotoxicology. Metallomics 6, 729–747 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ashkarran, A. A. et al. Measurements of heterogeneity in proteomics evaluation of the nanoparticle protein corona throughout core services. Nat. Commun. 13, 6610 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sheibani, S. et al. Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and picture simulation. Nat. Commun. 12, 573 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Z. T. et al. Protein binding affinity of polymeric nanoparticles as a direct indicator of their pharmacokinetics. ACS Nano 14, 3563–3575 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Principle Comput. 4, 116–122 (2008).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here