Quesada-Gonzalez, D. & Merkoci, A. Nanomaterial-based gadgets for point-of-care diagnostic functions. Chem. Soc. Rev. 47, 4697–4709 (2018).
Irvine, D. J. & Dane, E. L. Enhancing most cancers immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020).
Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary results of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).
Guerrini, G., Magrì, D., Gioria, S., Medaglini, D. & Calzolai, L. Characterization of nanoparticles-based vaccines for COVID-19. Nat. Nanotechnol. 17, 570–576 (2022).
Gadekar, V. et al. Nanomedicines accessible available in the market for scientific interventions. J. Management. Launch 330, 372–397 (2021).
Thi, T. T. H. et al. Lipid-based nanoparticles within the clinic and scientific trials: from most cancers nanomedicine to COVID-19 vaccines. Vaccines 9, 359 (2021).
Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, Ok. A. Biomolecular coronas present the organic id of nanosized supplies. Nat. Nanotechnol. 7, 779–786 (2012).
Ren, J. et al. Chemical and biophysical signatures of the protein corona in nanomedicine. J. Am. Chem. Soc. 144, 9184–9205 (2022).
Latreille, P.-L. et al. Scratching the floor of the protein corona: difficult measurements and controversies. ACS Nano 16, 1689–1707 (2022).
Li, M. et al. Nanoparticle elasticity impacts systemic circulation lifetime by modulating adsorption of apolipoprotein A-I in corona formation. Nat. Commun. 13, 4137 (2022).
Kamaly, N. Nanoparticle protein corona evolution: from organic impression to biomarker discovery. Nanoscale 14, 1606–1620 (2022).
Ju, Y. et al. Individual-specific biomolecular coronas modulate nanoparticle interactions with immune cells in human blood. ACS Nano 14, 15723–15737 (2020).
Hajipour, M. J., Laurent, S., Aghaie, A., Rezaee, F. & Mahmoudi, M. Customized protein coronas: a ‘key’ issue on the nano-bio interface. Biomater. Sci. 2, 1210–1221 (2014).
Shannahan, J. H. et al. From the duvet: disease-induced disparities in formation of the nanoparticle-biocorona and the toxicological penalties. Toxicol. Sci. 152, 406–416 (2016).
Ren, J. et al. Precision nanomedicine improvement primarily based on particular opsonization of human most cancers patient-personalized protein coronas. Nano Lett. 19, 4692–4701 (2019).
Lazarovits, J. et al. Synthesis of patient-specific nanomaterials. Nano Lett. 19, 116–123 (2019).
Di Santo, R. et al. Customized graphene oxide-protein corona within the human plasma of pancreatic most cancers sufferers. Entrance. Bioeng. Biotechnol. 8, 491 (2020).
Chetwynd, A. J. & Lynch, I. The rise of the nanomaterial metabolite corona, and emergence of the entire corona. Environ. Sci. Nano 7, 1041–1060 (2020).
Raesch, S. S. et al. Proteomic and lipidomic evaluation of nanoparticle corona upon contact with lung surfactant reveals variations in protein, however not lipid composition. ACS Nano 9, 11872–11885 (2015).
Braccia, C. et al. The lipid composition of few layers graphene and graphene oxide biomolecular corona. Carbon 185, 591–598 (2021).
Liu, Ok., Salvati, A. & Sabirsh, A. Physiology, pathology and the biomolecular corona: the confounding elements in nanomedicine design. Nanoscale 14, 2136–2154 (2022).
Kobos, L. M. et al. An integrative proteomic/lipidomic evaluation of the gold nanoparticle biocorona in wholesome and overweight circumstances. Appl. Vitr. Toxicol. 5, 150–166 (2019).
Lima, T., Bernfur, Ok., Vilanova, M. & Cedervall, T. Understanding the lipid and protein corona formation on totally different sized polymeric nanoparticles. Sci. Rep. 10, 1129 (2020).
Tavakol, M. et al. Illness-related metabolites have an effect on protein-nanoparticle interactions. Nanoscale 10, 7108–7115 (2018).
Luo, J., Yang, H. & Tune, B. L. Mechanisms and regulation of ldl cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020).
Civeira, F., Arca, M., Cenarro, A. & Hegele, R. A. A mechanism-based operational definition and classification of hypercholesterolemia. J. Clin. Lipidol. 16, 813–821 (2022).
Kim, S. H. et al. Understanding the biomolecular coronas of high-density lipoproteins on pegylated Au nanoparticles: implication for lipid corona formation within the blood. ACS Appl. Nano Mater. 5, 2018–2028 (2022).
Kim, H., Kumar, S., Kang, D. W., Jo, H. & Park, J. H. Affinity-driven design of cargo-switching nanoparticles to leverage a cholesterol-rich microenvironment for atherosclerosis remedy. ACS Nano 14, 6519–6531 (2020).
Fu, Q., Yu, L., Wang, Y., Li, P. & Tune, J. Biomarker-responsive nanosystems for continual illness theranostics. Adv. Funct. Mater. 33, 2206300 (2023).
Kim, Ok. R., Kim, J., Again, J. H., Lee, J. E. & Ahn, D. R. Ldl cholesterol-mediated seeding of protein corona on dna nanostructures for focused supply of oligonucleotide therapeutics to deal with liver fibrosis. ACS Nano 16, 7331–7343 (2022).
Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J. & El-Sayed, M. A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012).
Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived most cancers cells and suppress tumour progress. Nat. Nanotechnol. 11, 977–985 (2016).
Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A decade of the protein corona. ACS Nano 11, 11773–11776 (2017).
Xiao, Q. et al. The consequences of protein corona on in vivo destiny of nanocarriers. Adv. Drug Deliv. Rev. 186, 114356 (2022).
Blanco, E., Shen, H. & Ferrari, M. Rules of nanoparticle design for overcoming organic boundaries to drug supply. Nat. Biotechnol. 33, 941–951 (2015).
Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).
Francia, V. et al. Corona composition can have an effect on the mechanisms cells use to internalize nanoparticles. ACS Nano 13, 11107–11121 (2019).
Lara, S. et al. Identification of receptor binding to the biomolecular corona of nanoparticles. ACS Nano 11, 1884–1893 (2017).
Ngo, W. et al. Figuring out cell receptors for the nanoparticle protein corona utilizing genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).
Benetti, F., Bregoli, L., Olivato, I. & Sabbioni, E. Results of steel (loid)-based nanomaterials on important factor homeostasis: the central function of nanometallomics for nanotoxicology. Metallomics 6, 729–747 (2014).
Ashkarran, A. A. et al. Measurements of heterogeneity in proteomics evaluation of the nanoparticle protein corona throughout core services. Nat. Commun. 13, 6610 (2022).
Sheibani, S. et al. Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and picture simulation. Nat. Commun. 12, 573 (2021).
Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).
Cao, Z. T. et al. Protein binding affinity of polymeric nanoparticles as a direct indicator of their pharmacokinetics. ACS Nano 14, 3563–3575 (2020).
Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Principle Comput. 4, 116–122 (2008).