Home Technology New tendencies in mind tumor immunity with the alternatives of lymph nodes focused drug supply | Journal of Nanobiotechnology

New tendencies in mind tumor immunity with the alternatives of lymph nodes focused drug supply | Journal of Nanobiotechnology

0
New tendencies in mind tumor immunity with the alternatives of lymph nodes focused drug supply | Journal of Nanobiotechnology

[ad_1]

  • von Andrian UH, Mempel TR. Homing and mobile site visitors in lymph nodes. Nat Rev Immunol. 2003;3:867–78.

    Article 

    Google Scholar
     

  • Sainte-Marie G. The lymph node revisited: improvement, morphology, functioning, and function in triggering main immune responses. Anat Rec. 2010;293:320–37.

    Article 

    Google Scholar
     

  • Zhang F, Zhu L, Huang X, Niu G, Chen X. Differentiation of reactive and tumor metastatic lymph nodes with diffusion-weighted and SPIO-enhanced MRI. Mol Imag Biol. 2013;15:40–7.

    Article 
    CAS 

    Google Scholar
     

  • Louveau A, Smirnov I, Keyes TJ, et al. Structural and purposeful options of central nervous system lymphatic vessels. Nature. 2015;523:337–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains mind interstitial fluid and macromolecules. J Exp Med. 2015;212:991–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Administration of glioblastoma: cutting-edge and future instructions. CA Most cancers J Clin. 2020;70:299–312.

    Article 
    PubMed 

    Google Scholar
     

  • Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF circulation by way of the mind parenchyma and the clearance of interstitial solutes, together with amyloid β. Sci Transl Med. 2012;4: 147ra111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iliff JJ, Lee H, Yu M, et al. Mind-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Investig. 2013;123:1299–309.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liau LM, Ashkan Ok, Brem S, et al. Affiliation of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival amongst sufferers with newly identified and recurrent glioblastoma: a section 3 potential externally managed cohort trial. JAMA Oncol. 2023;9:112–21.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao P, Le Z, Liu L, Chen Y. Therapeutic supply to the mind by way of the lymphatic vasculature. Nano Lett. 2020;20:5415–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Medawar PB. Immunity to homologous grafted pores and skin; the destiny of pores and skin homografts transplanted to the mind, to subcutaneous tissue, and to the anterior chamber of the attention. Br J Exp Pathol. 1948;29:58–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradbury MW, Westrop RJ. Components influencing exit of drugs from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol. 1983;339:519–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I. T cells site visitors from mind to cervical lymph nodes by way of the cribroid plate and the nasal mucosa. J Leukoc Biol. 2006;80:797–801.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Widner H, Jönsson BA, Hallstadius L, Wingårdh Ok, Strand SE, Johansson BB. Scintigraphic methodology to quantify the passage from mind parenchyma to the deep cervical lymph nodes in rats. Eur J Nucl Med. 1987;13:456–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbott NJ. Proof for bulk circulation of mind interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45:545–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ray L, Iliff JJ, Heys JJ. Evaluation of convective and diffusive transport within the mind interstitium. Fluids Boundaries CNS. 2019;16:6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hannocks MJ, Pizzo ME, Huppert J, et al. Molecular characterization of perivascular drainage pathways within the murine mind. J Cereb Blood Circulate Metab. 2018;38:669–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pizzo ME, Wolak DJ, Kumar NN, et al. Intrathecal antibody distribution within the rat mind: floor diffusion, perivascular transport and osmotic enhancement of supply. J Physiol. 2018;596:445–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the mind and the pathophysiology of neurological illness. Acta Neuropathol. 2009;117:1–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Földi M, Gellért A, Kozma M, Poberai M, Zoltán OT, Csanda E. New contributions to the anatomical connections of the mind and the lymphatic system. Acta Anat. 1966;64:498–505.

    Article 
    PubMed 

    Google Scholar
     

  • Da Mesquita S, Louveau A, Vaccari A, et al. Practical elements of meningeal lymphatics in ageing and Alzheimer’s illness. Nature. 2018;560:185–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn JH, Cho H, Kim JH, et al. Meningeal lymphatic vessels on the cranium base drain cerebrospinal fluid. Nature. 2019;572:62–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Qi L, Yang D, et al. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat Neurosci. 2022;25:577–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Da Mesquita S, Fu Z, Kipnis J. The meningeal lymphatic system: a brand new participant in neurophysiology. Neuron. 2018;100:375–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly by way of lymphatic vessels and is decreased in aged mice. Nat Commun. 2017;8:1434.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu X, Deng Q, Ma L, et al. Meningeal lymphatic vessels regulate mind tumor drainage and immunity. Cell Res. 2020;30:229–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuo PH, Stuehm C, Squire S, Johnson Ok. Meningeal lymphatic vessel circulation runs countercurrent to venous circulation within the superior sagittal sinus of the human mind. Tomography (Ann Arbor, Mich). 2018;4:99–104.

    Article 
    PubMed 

    Google Scholar
     

  • Mo F, Pellerino A, Soffietti R, Rudà R. Blood-brain barrier in mind tumors: biology and scientific relevance. Int J Mol Sci. 2021;22:12654.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daneman R, Prat A. The blood-brain barrier. Chilly Spring Harb Perspect Biol. 2015;7: a020412.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tietz S, Engelhardt B. Mind limitations: crosstalk between complicated tight junctions and adherens junctions. J Cell Biol. 2015;209:493–506.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Owens T, Bechmann I, Engelhardt B. Perivascular areas and the 2 steps to neuroinflammation. J Neuropathol Exp Neurol. 2008;67:1113–21.

    Article 
    PubMed 

    Google Scholar
     

  • Schläger C, Körner H, Krueger M, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016;530:349–53.

    Article 
    PubMed 

    Google Scholar
     

  • Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun. 2014;5:4196.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arrieta VA, Dmello C, McGrail DJ, et al. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to customized remedy. J Clin Investig. 2023. https://doi.org/10.1172/JCI163447.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: classes from glioblastoma. Nat Immunol. 2019;20:1100–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020;20:25–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antila S, Karaman S, Nurmi H, et al. Growth and plasticity of meningeal lymphatic vessels. J Exp Med. 2017;214:3645–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breslin JW, Gaudreault N, Watson KD, Reynoso R, Yuan SY, Wu MH. Vascular endothelial development factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am J Physiol Coronary heart Circ Physiol. 2007;293:H709-718.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune E, Mao T, Dong H, et al. VEGF-C-driven lymphatic drainage permits immunosurveillance of mind tumours. Nature. 2020;577:689–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological concerns for COVID-19 vaccine methods. Nat Rev Immunol. 2020;20:615–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liau LM, Ashkan Ok, Tran DD, et al. First outcomes on survival from a big Section 3 scientific trial of an autologous dendritic cell vaccine in newly identified glioblastoma. J Transl Med. 2018;16:142.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagley SJ, Desai AS, Linette GP, June CH, O’Rourke DM. CAR T-cell remedy for glioblastoma: latest scientific advances and future challenges. Neuro Oncol. 2018;20:1429–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi BD, Maus MV, June CH, Sampson JH. Immunotherapy for glioblastoma: adoptive T-cell methods. Clin Most cancers Res. 2019;25:2042–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin YJ, Mashouf LA, Lim M. CAR T cell remedy in main mind tumors: present investigations and the longer term. Entrance Immunol. 2022;13: 817296.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quail DF, Joyce JA. The microenvironmental panorama of mind tumors. Most cancers Cell. 2017;31:326–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perng P, Lim M. Immunosuppressive mechanisms of malignant gliomas: parallels at non-CNS websites. Entrance Oncol. 2015;5:153.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampson JH, Gunn MD, Fecci PE, Ashley DM. Mind immunology and immunotherapy in mind tumours. Nat Rev Most cancers. 2020;20:12–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Wilhelm J, Li W, et al. Polycarbonate-based ultra-pH delicate nanoparticles enhance therapeutic window. Nat Commun. 2020;11:5828.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Fan Y, Yu X, Semetey V, Trépout S, Li MH. Mild-gated nano-porous capsules from stereoisomer-directed self-assemblies. ACS Nano. 2021;15:884–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, Chen J, Yang Z, et al. Nanoparticle-enhanced radiotherapy to set off strong most cancers immunotherapy. Adv Mater (Deerfield Seaside, Fla). 2019;31: e1802228.

    Article 

    Google Scholar
     

  • Li Z, Zhu L, Solar H, et al. Fluorine meeting nanocluster breaks the shackles of immunosuppression to show the chilly tumor scorching. Proc Natl Acad Sci USA. 2020;117:32962–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Wang Y, Shen Y, Qian C, Oupicky D, Solar M. Focusing on pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to boost anti-PD-L1 immunotherapy. Sci Adv. 2020;6: eaaz9240.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W-D, Solar Z-J. Evoking pyroptosis with nanomaterials for most cancers immunotherapy: present growth and novel outlook. Nano TransMed. 2022;1: e9130001.

    Article 

    Google Scholar
     

  • Griffin M, Castro N, Bas O, Saifzadeh S, Butler P, Hutmacher DW. The present versatility of polyurethane three-dimensional printing for biomedical purposes. Tissue Eng Half B Rev. 2020;26:272–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schudel A, Francis DM, Thomas SN. Materials design for lymph node drug supply. Nat Rev Mater. 2019;4:415–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Kang S, Park H, Solar JG, Kim EC, Shim G. Nanoparticles for lymph node-directed supply. Pharmaceutics. 2023;15:565.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo concentrating on of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Management Launch. 2006;112:26–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Wang J, Zhu D, et al. Impact of physicochemical properties on in vivo destiny of nanoparticle-based most cancers immunotherapies. Acta Pharm Sin B. 2021;11:886–902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardones AR, Leitner WW, Fang L, et al. Genetic immunization with LYVE-1 cDNA yields function-blocking antibodies in opposition to native protein. Microvasc Res. 2006;71:32–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown P. Lymphatic system: unlocking the drains. Nature. 2005;436:456–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irjala H, Johansson EL, Grenman R, Alanen Ok, Salmi M, Jalkanen S. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J Exp Med. 2001;194:1033–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo M, Wang H, Wang Z, et al. A STING-activating nanovaccine for most cancers immunotherapy. Nat Nanotechnol. 2017;12:648–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schudel A, Chapman AP, Yau MK, et al. Programmable multistage drug supply to lymph nodes. Nat Nanotechnol. 2020;15:491–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karabin NB, Allen S, Kwon HK, et al. Sustained micellar supply by way of inducible transitions in nanostructure morphology. Nat Commun. 2018;9:624.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen TM, Cullis PR. Liposomal drug supply programs: from idea to scientific purposes. Adv Drug Deliv Rev. 2013;65:36–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine supply programs towards lymph nodes. Adv Drug Deliv Rev. 2021;179: 113914.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Du C, Guo N, et al. Composition design and medical software of liposomes. Eur J Med Chem. 2019;164:640–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura T, Harashima H. Daybreak of lipid nanoparticles in lymph node concentrating on: potential in most cancers immunotherapy. Adv Drug Deliv Rev. 2020;167:78–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanasty R, Dorkin JR, Vegas A, Anderson D. Supply supplies for siRNA therapeutics. Nat Mater. 2013;12:967–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA supply. Nat Biotechnol. 2010;28:172–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilleron J, Querbes W, Zeigerer A, et al. Picture-based evaluation of lipid nanoparticle-mediated siRNA supply, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31:638–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yonezawa S, Koide H, Asai T. Current advances in siRNA supply mediated by lipid-based nanoparticles. Adv Drug Deliv Rev. 2020;154–155:64–78.

    Article 
    PubMed 

    Google Scholar
     

  • Corrias F, Lai F. New strategies for lipid nanoparticles preparation. Current Pat Drug Deliv Formul. 2011;5:201–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim S, Shi Y, Kim JY, Park Ok, Cheng JX. Overcoming the limitations in micellar drug supply: loading effectivity, in vivo stability, and micelle-cell interplay. Professional Opin Drug Deliv. 2010;7:49–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okamoto A, Asai T, Hirai Y, et al. Systemic administration of siRNA with anti-HB-EGF antibody-modified lipid nanoparticles for the remedy of triple-negative breast most cancers. Mol Pharm. 2018;15:1495–504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aldén M, Olofsson Falla F, Yang D, et al. Intracellular reverse transcription of Pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line. Curr Points Mol Biol. 2022;44:1115–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boettler T, Csernalabics B, Salié H, et al. SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis. J Hepatol. 2022;77:653–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loughrey D, Dahlman JE. Non-liver mRNA supply. Acc Chem Res. 2022;55:13–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Ye Z, Huang C, et al. Lipid nanoparticle-mediated lymph node-targeting supply of mRNA most cancers vaccine elicits strong CD8(+) T cell response. Proc Natl Acad Sci USA. 2022;119: e2207841119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu X, Dai Y, Zhao Y, et al. Melittin-lipid nanoparticles goal to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020;11:1110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez CR, De Palma M. Engineering dendritic cell vaccines to enhance most cancers immunotherapy. Nat Commun. 2019;10:5408.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting method. Nat Rev Drug Discov. 2020;19:635–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of sufferers with B-cell lymphoma utilizing autologous antigen-pulsed dendritic cells. Nat Med. 1996;2:52–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Scientific use of dendritic cells for most cancers remedy. Lancet Oncol. 2014;15:e257-267.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anguille S, Smits EL, Bryant C, et al. Dendritic cells as pharmacological instruments for most cancers immunotherapy. Pharmacol Rev. 2015;67:731–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boucher P, Cui X, Curiel DT. Adenoviral vectors for in vivo supply of CRISPR-Cas gene editors. J Management Launch. 2020;327:788–800.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu FC, Guan XH, Li YH, et al. Immunogenicity and security of a recombinant adenovirus type-5-vectored COVID-19 vaccine in wholesome adults aged 18 years or older: a randomised, double-blind, placebo-controlled, section 2 trial. Lancet (London, England). 2020;396:479–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sayedahmed EE, Elkashif A, Alhashimi M, Sambhara S, Mittal SK. Adenoviral vector-based vaccine platforms for growing the subsequent technology of influenza vaccines. Vaccines. 2020;8:574.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flemming A. mRNA vaccine exhibits promise in autoimmunity. Nat Rev Immunol. 2021;21:72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Alternatives and challenges within the supply of mRNA-based vaccines. Pharmaceutics. 2020;12:102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here