Home Machine Learning Unifying image-caption and image-classification datasets with prefix conditioning – Google Analysis Weblog

Unifying image-caption and image-classification datasets with prefix conditioning – Google Analysis Weblog

Unifying image-caption and image-classification datasets with prefix conditioning – Google Analysis Weblog


Pre-training visible language (VL) fashions on web-scale image-caption datasets has just lately emerged as a robust various to conventional pre-training on picture classification knowledge. Picture-caption datasets are thought of to be extra “open-domain” as a result of they comprise broader scene varieties and vocabulary phrases, which lead to fashions with sturdy efficiency in few- and zero-shot recognition duties. Nevertheless, photos with fine-grained class descriptions will be uncommon, and the category distribution will be imbalanced since image-caption datasets don’t undergo guide curation. In contrast, large-scale classification datasets, akin to ImageNet, are sometimes curated and might thus present fine-grained classes with a balanced label distribution. Whereas it could sound promising, instantly combining caption and classification datasets for pre-training is usually unsuccessful because it can lead to biased representations that don’t generalize nicely to varied downstream duties.

In “Prefix Conditioning Unifies Language and Label Supervision”, offered at CVPR 2023, we exhibit a pre-training technique that makes use of each classification and caption datasets to supply complementary advantages. First, we present that naïvely unifying the datasets ends in sub-optimal efficiency on downstream zero-shot recognition duties because the mannequin is affected by dataset bias: the protection of picture domains and vocabulary phrases is totally different in every dataset. We handle this downside throughout coaching via prefix conditioning, a novel easy and efficient methodology that makes use of prefix tokens to disentangle dataset biases from visible ideas. This strategy permits the language encoder to study from each datasets whereas additionally tailoring function extraction to every dataset. Prefix conditioning is a generic methodology that may be simply built-in into present VL pre-training targets, akin to Contrastive Language-Picture Pre-training (CLIP) or Unified Contrastive Studying (UniCL).

Excessive-level concept

We notice that classification datasets are typically biased in at the least two methods: (1) the photographs largely comprise single objects from restricted domains, and (2) the vocabulary is restricted and lacks the linguistic flexibility required for zero-shot studying. For instance, the category embedding of “a photograph of a canine” optimized for ImageNet normally ends in a photograph of 1 canine within the heart of the picture pulled from the ImageNet dataset, which doesn’t generalize nicely to different datasets containing photos of a number of canine in several spatial areas or a canine with different topics.

In contrast, caption datasets comprise a greater diversity of scene varieties and vocabularies. As proven beneath, if a mannequin merely learns from two datasets, the language embedding can entangle the bias from the picture classification and caption dataset, which may lower the generalization in zero-shot classification. If we will disentangle the bias from two datasets, we will use language embeddings which can be tailor-made for the caption dataset to enhance generalization.

Prime: Language embedding entangling the bias from picture classification and caption dataset. Backside: Language embeddings disentangles the bias from two datasets.

Prefix conditioning

Prefix conditioning is partially impressed by immediate tuning, which prepends learnable tokens to the enter token sequences to instruct a pre-trained mannequin spine to study task-specific data that can be utilized to resolve downstream duties. The prefix conditioning strategy differs from immediate tuning in two methods: (1) it’s designed to unify image-caption and classification datasets by disentangling the dataset bias, and (2) it’s utilized to VL pre-training whereas the usual immediate tuning is used to fine-tune fashions. Prefix conditioning is an express solution to particularly steer the habits of mannequin backbones based mostly on the kind of datasets supplied by customers. That is particularly useful in manufacturing when the variety of several types of datasets is understood forward of time.

Throughout coaching, prefix conditioning learns a textual content token (prefix token) for every dataset sort, which absorbs the bias of the dataset and permits the remaining textual content tokens to give attention to studying visible ideas. Particularly, it prepends prefix tokens for every dataset sort to the enter tokens that inform the language and visible encoder of the enter knowledge sort (e.g., classification vs. caption). Prefix tokens are skilled to study the dataset-type-specific bias, which allows us to disentangle that bias in language representations and make the most of the embedding realized on the image-caption dataset throughout take a look at time, even with out an enter caption.

We make the most of prefix conditioning for CLIP utilizing a language and visible encoder. Throughout take a look at time, we make use of the prefix used for the image-caption dataset because the dataset is meant to cowl broader scene varieties and vocabulary phrases, main to raised efficiency in zero-shot recognition.

Illustration of the Prefix Conditioning.

Experimental outcomes

We apply prefix conditioning to 2 varieties of contrastive loss, CLIP and UniCL, and consider their efficiency on zero-shot recognition duties in comparison with fashions skilled with ImageNet21K (IN21K) and Conceptual 12M (CC12M). CLIP and UniCL fashions skilled with two datasets utilizing prefix conditioning present giant enhancements in zero-shot classification accuracy.

Zero-shot classification accuracy of fashions skilled with solely IN21K or CC12M in comparison with CLIP and UniCL fashions skilled with each two datasets utilizing prefix conditioning (“Ours”).

Research on test-time prefix

The desk beneath describes the efficiency change by the prefix used throughout take a look at time. We exhibit that by utilizing the identical prefix used for the classification dataset (“Immediate”), the efficiency on the classification dataset (IN-1K) improves. When utilizing the identical prefix used for the image-caption dataset (“Caption”), the efficiency on different datasets (Zero-shot AVG) improves. This evaluation illustrates that if the prefix is tailor-made for the image-caption dataset, it achieves higher generalization of scene varieties and vocabulary phrases.

Evaluation of the prefix used for test-time.

Research on robustness to picture distribution shift

We examine the shift in picture distribution utilizing ImageNet variants. We see that the “Caption” prefix performs higher than “Immediate” in ImageNet-R (IN-R) and ImageNet-Sketch (IN-S), however underperforms in ImageNet-V2 (IN-V2). This means that the “Caption” prefix achieves generalization on domains removed from the classification dataset. Subsequently, the optimum prefix most likely differs by how far the take a look at area is from the classification dataset.

Evaluation on the robustness to image-level distribution shift. IN: ImageNet, IN-V2: ImageNet-V2, IN-R: Artwork, Cartoon type ImageNet, IN-S: ImageNet Sketch.

Conclusion and future work

We introduce prefix conditioning, a way for unifying picture caption and classification datasets for higher zero-shot classification. We present that this strategy results in higher zero-shot classification accuracy and that the prefix can management the bias within the language embedding. One limitation is that the prefix realized on the caption dataset will not be essentially optimum for the zero-shot classification. Figuring out the optimum prefix for every take a look at dataset is an attention-grabbing route for future work.


This analysis was carried out by Kuniaki Saito, Kihyuk Sohn, Xiang Zhang, Chun-Liang Li, Chen-Yu Lee, Kate Saenko, and Tomas Pfister. Due to Zizhao Zhang and Sergey Ioffe for his or her precious suggestions.



Please enter your comment!
Please enter your name here